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A Model for the Determination of the Variance in
Genetic Relationship among Offspring from Open -pollinated

Plant Populations

Hans-Rolf Gregorius

Lehrstuhl fiir Forstgenetik und Forstpflanzenziichtung der Universitit Géttingen (BRD)

Summary. Continuing a study of the average coefficient of kinship and inbreeding among offspring from
specified mother plants belonging to a population of monoecious, diploid seed-plants, the variances of
these coefficients have been computed. The variance in kinship was considered among offspring from a
single mother plant and between offspring from two different mother plants. Special interest has been
paid to the role played by the rate of self-fertilization and the effective size of neighbourhood and com-
monneighbourhood. The graphical representation of some numerical examples indicates that itisimpossible
to predict general tendencies which hold true for the behaviour of all three types of variance if they are
regarded as functions of the rate of self-fertilization; only the coefficient of inbreeding and kinship among
offspring from the same parent showed similar tendencies. The influence of the effective size of neigh-
bourhood and common neighbourhood on the respective variances proved to be of minor importance.

Introduction

Although the coefficient of kinship has been defined on a
probabilistic basis by Malécot (1948), it can be con-
ceived as a deterministic quantity in so far as its defini-
tion refers to a fixed pair of individuals. However, in
many cases this pair of individuals results from a ran-
dom sample taken from specified populations, whose
members are genetically related in different ways. In
order to extend the concept of the coefficient of kinship
for a given pair of individuals to this situation, usually
the average for all possible pairs is taken. More pre-
cisely, this means that the coefficient of kinship is re-
garded as a realization of a random variable, and the
average is the expectation of this variable. The informa-
tion about genetic relationship within a population or be-
tween populations, which is contained in the average,
may be very misleading, because it makes no statements
about the size and frequency of existing deviations. Thus
it is necessary to determine the variance of the coeffi-
cient of kinship in order to get an idea of the degree of
heterogeneity of the genetic relationship within or be-
tween populations. Despite the fact that considerable de-
viations in the coefficient of kinship from expectationcan
lead to severe consequences inthe field of applied breed-
ing theory when merely considering averages, to my
knowledge it is hard to find any publication, except the
paper of Leviandier and Jacquard (1974), treating vari-
ances of coefficients of kinship. Because of this the aim
of the present paper was to derive these variances for

the special situations arising in monoecious seed plant

populations. The basic assumptions underlying the model
employed are the same as those chosen in a preceding
paper (Gregorius 1975), which the present paper com-
pletes. This model serves to determine the variance of
the coefficient of kinship of two seeds randomly taken
from the seed production of one mother plant or two dif-
ferent mother plants and the variance of the coefficient
of inbreeding within the seed production of one mother
plant.

The Model

The basic assumptions taken from the paper published re-
cently (Gregorius 1975) will be repeated briefly:

The considerations are based on monoecious, diploid
seed plant populations which are distributed over their
habitats according to a specified population density. The
seed production of each plant is broken down into one
part resulting from self-fertilization and a remaining
part resulting from cross-fertilization. All members
of the population flower at the same time and any form
of gametic selection, mutation and immigration of pol-
len is regarded as negligible. The mating probabilities
between single individuals are assumed to contain the
influence due to the mode of pollen-dispersal and dif-
ferential pollen production.

The following notation will be used:

uw(x)  := population density at place x.

q(x) : = rate of self-fertilization of a plant located at
‘ place x.

p(x|y) := probability-density that pollen which came to

fertilization at a plant located at place y or-
iginates from a plant located at place x.



: = probability that the two male gametes (pollen)
contained in two seeds belonging to the cross-
fertilized part of the seed production of a
plant located at place x originate from the
same father plant. Obviously

probability that the two male gametes (pollen)
contained in two seeds belonging to the cross-
fertilized parts of the seed production of two
plants located at places x and y, respective-
ly, originate from the same father plant.

Obviously K{(x,y) :f (ZI:)Z(Z ) 4z

coefficient of inbreeding of a plant located at
place x. f(x) is conceived as a random vari-
able.

coefficient of kinship between two plants lo-
cated at places x and y, respectively. &(x,y)
is conceived as a random variable.

K(x,y) :=

f(x) =

(x,y) :=

Note that %l can be regarded as an approxima-

tion for the probability that pollen which came to fertili-
zation at a plant located at place y originates from just
one different plant located at place x.

The parental population is assumed to result from
random distribution of the individuals over the habitat.
This implies that the random variables ¢(x,y) have iden-
tical probability-distributions for all places x and y,
the same being true for the variables f(x) for all places
x, and that the variables ¢(x,y) and f(x) are mutually

stochastically independent for all x and y.

Based on these assumptions, the variance of the
coefficient of kinship among the seed production of a
plant located at a specified place and between the seed
production of two different plants located at specified
places and the variance of the coefficient of inbreeding
within the seed production of a plant located at a spec-

ified place will be computed.

The coefficient of kinship of two specified individuals
(and of inbreeding in one specified individual) is com-
pletely determined by the genetic relationship between
their (or its) parents. In our case parents are identified
by the places at which they are located, which, for the
present consideration, requires distinguishing between

three situations:

a) two seeds are produced from the same plant lo-
cated at place x; in this case the variable La(x) shall
designate the two places from which the male gamete
(pollen) present in each seed originates, and the variable

<I>a(x) gives the coefficient of kinship between these seeds.

b) two seeds produced from two different plants lo-

cated at places x and y each; in this case the variable
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The remaining three cases B;,B;,Bg can be obtained
from B,,B,;,Bg using the same order, by changing sub-
scripts 1 into 2 and 2 into 1.

Fig.1. Types of identity between parents (¢ = female pa-
rent, &= male parent): a) The two offspring (seed) I4 and
I; originate from the same mother plant (9; = ©5). b) The
two offspring (seed) I; and I originate from two differ-
ent mother plants (94 # 93). c) Types of identity between
the two parents of one offspring (seed) I

Lb(x,y) shall designate the two places from which the
male gametes present in each seed originate, and the var-
iable i)b(x,y) gives the coefficient of kinship between
these seeds.

c) a seed is produced from a plant located at place x;
in this case the variable Lc(x) shall designate the place
from which the male gamete present in this seed origi-
nates, and the variable fc(x) gives the coefficient of in-

breeding of this seed.
Since the fact that some of the parents (e.g. in situ-

ation a) up to all four) may happen to be the same indi-
vidual introduces an effect on the genetic relationship
among offspring which is not just due to the relatedness
of their parents, this influence should be taken into ac-
count by distinguishing the different types of identity be-
tween parents for each of the above three situations (as
in Fig.1).

It is nowpossible to give a compilationof all the values
that the variables @a(x), <I>b(x,y) and fc(x) can adopt:
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a) <I> (x) in case A, (i=1,...,4)and L (x) is given:

i
AL L) = (%) i3 (1+1(x)5
Ay, Lo (x) = (x,y) :% [% 1+£(x)) + @(x,y)]
Ag L) = (z,y) 1§ |3 (1+260) + 0(x,y) + 8(z, %) +
+ o(z,y)
A, L (x)= 111 1
o L0 = (1) 7 [§ (141x) + 2800y) » S (11 |-

b) <I>b(x,y) in case Bi(i=1,...,10) and Lb(x,y) is

given:
B, L (x,y) = (x,y) : ¢(x,y)
B, Ly (x,y) = (x,2) 1 3 [8(x,y) + #(x,2)]
B,, L (x,y) = (z,y) :% [o(x,y) +o(y,z)]
By, L (6,y) = (5,%) 13 [a(x,y) + 3 (1+£(x))]
By, Ly(x,y) = (7,5) 13 [(x,3) + 3 (1+£(y))]
B, L (,y) = (u,v) 13 [8(x,3) + (x,v) + &(u,y) +
+ &(u,v)]
B,, L (x,y) = (u,u) :% [o(x,y)+ &(x,u) + &(u,y) +
| + 3 (1+1(u))]
Bg, L, (6,y) = (1,%) 1 3 [2(x,3) + 3 (1+2(x)) + 8(u,y) +
+ ®(u,x)]
By, Ly (x,y) = (y,u) 1 3 [00x,3) + 3 (1+8(3)) + 9(u,x) +

+ &(u,y)]
[2®(x,y)+%(1+f(x))+

+ 3 (1+1(y))3.

LTSS

B Ly(y,x) = (y,x) :

c) fc(x) in case Ci(i=1,2) and Lc(x) is given:
1
Cl, Lc(x) =x:5 (1+£(x)); Cz, LC(X) =y:o(x,y)

Returning to our actual intention, namely the compu-
tation of the variances V(...) of &, (x), & (x,y) and
f (x), which in terms of expectatlons E(.. .) may be
glven the representatlon V(<I> (x)) = E(<I> (x) ) -
- E(e, (x))2
problem applying some elementary properties for con-

etc., we are now in a p051t10n to solve the

ditional expectations. The conditional expectation of e.g.
%, (x) given L_ (x) will be written as E (&_(x)|L_(x)). With
this notation, and using P (A) for the probability of any
event A, we obtain

4
E(2,00) = ) P(a) BB, (0)]L,(x))|4)

(1)
i=1
10
E(2,(6,y)) = ) | P(B) - B(E(3,(6y) | Ly(xy))[B))
i=1
(2)

159

2
B(1,(x) = )| P(C)-BE(E (L, DIC), ()
i=1
the same representations holding true if @S, <I>t2), fi are
substituted for @a, <I>b,

mains to determine the probabilities P(...) and the con-~

fc respectively. Thus it re-

ditional expectations.
The probabilities P(Ai)’ P(Bi) and P(Ci) can be de-
rived directly from the statements contained in Fig.1, re-

calling the meaning of the quantities
q(x), Pﬁ-‘-%—ixx ) , K(x) and K(x,y):
P(A,) = a(x)?, P(4,) = 2q(x) (1-q(x)),

P(ay) = (1-a(x)2(1-K(x)), P(A,) = (1-q(x)?-K(x);

P(B,) = alx)aly), P(8,)=alx)(1-a(y))(1-REH) ),

P(B,) = (1-a(e)al)(1-BYK ), (B, = atx) (1-a(y)-
bex) | p(sy) = (1-alx)aly) - BUEL

P(Bg) = (1-a(x)) (1-a(y)) - |(1- BEAD). (1 iyl )

Ky, P(B,) = (1-ax) (1-a(y)) - Klx,y),

P(Bg) = (1-a(x)) (1-q(y)) (1 - )y RO

(1-q(x)) (1-q(y)) (1 - ‘X ). %T)

P(Bq) = (1-a(x)) (1-q(y)) - %ﬁ

P(C,) = qlx), 1-q{x).

4 10 2
Clearly Z P(Ai) = Z P(Bi) = Z P(Ci) =1.
i=1 i=1 i=1

Because the $(x,y) have been assumed to possess

P(By) =

P(C,) =

identical distributions for all places x, y, as do the
f(x) for all places x, the above conditional expectations
of <I>a(x), @b(x,y) and fc(x) attain the following repre-
sentations, putting E(¢(x,y)) = ¢ and E(f(x)) = f:
B (E(@a(x) [La(x) ) Ai) in case

1 ()

L1 1 1 3
AZ'Z(1+f)+§ §(1+f)+z'd>;

1 1

Z(1+f)+§-<l>.
E(E}(@ (x,y)|L (x,y))fBi) in case
B BZ’B andBG'cb' B
B B andB

Bgand B,j: 7 (1+f) +—- 3

4’
(1+f) +3 9.

0

E(E(fc(x) |Lc(x)) \ci) in case

.1 . .
C g (1+0)5 Cyi 0
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Applying formulae (1), (2) und (3) we are now im-

mediately led to

B, (x)) =8+ 5(1+0)- 01+ 3 L(1+aq(x)) % +(1-q(x)) 2 K (x)]

E(@y(x,y)) =e+[5(1+0)-21-J R (10q(x)) (1-q(v))+
+E§{Jy_};l(1_q(x))(1+q(y))+(1—q(x))(1—q(Y))'K

B(f_(x)) =8 +[ 3(1+£)- 2 1-q(x),

which are exactly the same results I derived earlier (Gre-

(x,y)1

gorius 1975, equ.(1a), (2a), (3a)) using a different ap-
proach.

The assumption of mutual independence among the va-
riables $(x,y) and f(x) for all places x and y implies
the following results for the conditional expectations of

@2, <I> and f , putting V{(&(x,y)) = V., and V(f(x)):Vf:

a

]
E(E(Cb (X)ZIL (x))|A) in case

Lan2idv,; a:d (3 (Ln?ed 2
(1+f) + f’ A2‘4(4(1+f) +4Vf+V®+q>

+(1+£)9) H

1
+va+ qub

1 +V<I> +<I>2+ (1+£)®) .

1 1.2 +3(148) 8+ 902) 5

3°

.Mo—x ,_;
NN "“I"‘

A
A ( (1+f)2+

=V

4’ 8 f

E(E(@b(x,y)ziLb(x,y))[BI.) in case

B,:V +<1>2-B 32

1" 79

B4andB5'

1
and BB'EVrb
(V¢+<I>2+71—V 1 (1+f)2 v (1+£)8) 5

Vf+3V

f+
B,, Bgand By : 16 (4

(1+f)2 +3(1+1)d + 99 ) 5

6°3Vp " ot

|"‘ '9‘ .ph—t

* 3

1
B10 7 (qu +§Vf+ d +Z(1+f)2 + (1+£)0) .

E(E (1, (x)?]L (x))lci) in case

1 2 2
Cy: 4(1+f) 4vf,cz V®+<I>.
With that, all the quantities which are needed to com-

(2) and
(3) are specified. In order to arrive at a representation

pute the variances according to formulae (1),

which is as easy as possible to survey, and at the same
time displays the role played by V@, Vf, ¢ and f clearly,
it is necessary to perform some tedious rearrangements

leading to the following final results:

V(éa(x))=V¢- (x)+ - a, (x)+[ (1+£)- <I>] -as(x)

(4)

4 f

V(8 (x,5)) = Vg by (x,5) + § V- by(x,y) +
[ (1+2) =227 - by(x,y)
(5)
V(,(x)) = Vg + (1-q(x)) + 3 V- qlx) +
+ [ (1+0) -82% - (1-q(x))a(x)
(6)
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a,(x) = 35 (1-q())? K (x) + £ (1-q(x))(§ + 2 q(x))

a,(x) = 72 (1-q(x))? K(x) + (5 + 3 q(x))?

ag(x) = (1-q(x))2 - K(x) + (%-+%-q(X))2 -

1
el
16
3
16
2 [(1+q(x))% + (1-a(x))2 - K (x) 12
b, (x,y) = Z (1+q(x)) (1+q(y)) -
- 35 (1-(x)) (1-q(y)) K (x,¥) -
)p(y|x)
- 2 BOEER 0 -4
-Pﬁ‘}gg—)-zu—q(x))@wq(y)) Rlylx)
(1-a()(} + $a(x)) - REY.

1
4
3 (ma00) (3 + Faly)) -ROEH

T a3+ Fax)) -

b,(x,y) =

+

L (1-q(x)) (1-q(y)) - K(x,y)

(1-a()) (3 + $a(x) - R,
(1-a(e) (3 + Fa()) - B

(1-q(x)) (1-q(y)) [K(x,y) +
Q()dz)p(x x) 4.

pAX/uly
—1—6[ B0 (14q00) (1-q(3)) +

- B y") (1+q(y)) (1-q(x)) +

+ (1-q(x)) (1=q(y)) - K(x,y) 1%.

—
[=2]

1

NS

b, (x,y)

.&[r—t

c»l"‘

The surprisingly high formal agreement between (4),
(5) and (6) allows some statements to be made which
are applicable to all of the three situations. The variances
increase in a linear manner with VQ, Vf and the squared
difference between the average coefficient of kinship of a
plant with itself % (1+f) and the average coefficient of
kinship between two different plants ¢. Furthermore,
provided we accept the case % (1+f) < & to be not rea-
listic, the variances of f and ¢ increase and decrease,
respectively, with increasing values for f and ¢. This
last finding deserves particular attention, since it tells
us that an increasing average coefficient of kinship in the
parental generation always implies increasing homogen-
ization of kinship as well as inbreeding effects within the
offspring generation, while an increasing coefficient of
inbreeding has just the opposite consequence.

Considering a joint change in & and f homogenization
is approached to the second order according to the de-

creasing difference —é— (1+f) - .
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If a plant population reproduces by pure self-fertili-
zation only, i.e. g(x) =1, then al(x) = as(x) =
= bz(x,y) = bs(x,y) =0 and bl(x,y) = az(x) =1 and
therefore V(<I>a(x)) = V(fc(x)) = %st V(@b(x,y) =Vy
as could have been expected. Theimpact of varying rates
of self-fertilization on the variances can be demonstrat-
ed by Figs.2, 3, 4, where for simplicity we assume q(x)
to be constant throughout the population, i.e. g(x) =q.
The fact that the expectations of <I>a, <I>b and fc in suc-
cession, are increasing, decreasing and increasing func-
tion of q, should be regarded as the background to the fol-

lowing results (Figs.2, 3, 4):

8
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q —

Fig.2. The variance of the coefficient of kinship . be-
tween two seeds produced from the same mother plant as
a function of the rate of self-fertilization q. The repre-
sentations are based on-K(x) = 0.15
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Fig.3. The variance of the coefficient of kinship &y(x,y)
between two seeds produced from two different mother
plants located at places x and y respectively as a func-
tion of the rate of self-fertilization g. The representa-
tions are based on

K(x,y) = 0.13 and P%’é‘;‘# - L&{.}l’%‘l - 0.04
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Fig.4. The variance of the coefficient of inbreeding f. of
a seed as a function of the rate of self-fertilization gq

It obviously is impossible to predict general tenden-
cies which hold true for the behaviour of all three var-
iances if they are regarded as functions of the rate of
self-fertilization q. Furthermore, this statement can
even be maintained considering just one of the variances,
namely V(2 (x,y)), whose type of dependence on g, to
a high degree is determined by the 'initial conditions' for
V<I>’ Vf, % and f. On the other hand, comparing figures
4 and 2, inbreeding and the relationship between off-
spring from the same parent lead to the same tendencies
for their respective variances, but differ olearly with
respect to magnitude in favour of V(fc) .

The Influence of Neighbourhood-Size

We shall use Wright's (1946) concept of neighbourhood in
a sense which is directly applicable to the conditions
realized in plant populations (see Gregorius 1975). In
the latter paper the notations Ne(x) and Ne(x,y) were
used respectively to describe the effective size of neigh-
bourhood of a plant located at place x and of the effective
size of common neighbourhood of two plants located at
places x and y, and it could have been shown that

K{x) = Nﬁ(ﬁ and K(x,y) = ﬁf)(—’;%elm . These quan-
tities, including ETL{—L(LXX ) , comprise all effects on the var-
iances which are due to the pollen-dispersal; consequent-
ly pollen dispersal does not affect the variance nor the
expectation of fc’ as can be seen from the respective re-
presentations. On the other hand, expectations and var-
iances for <I>a and @b are governed by pollen dispersal,
but in two entirely different ways. E(@a(x)) and V(&(x))
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Fig.5. The variance of the coefficient of kinship &. of
two seeds produced from the same mother plant as a func-
tion of the effective size of neighbourhood N,

depend solely on the effective neighbourhood-size Ne(x) ,
and E(@a(x)) is a decreasing function of this. An im-
portant aspect in this case is that the same size for
Ne(x) can be obtained from basically different conditions
concerning e.g. dimensionality of the habitat, popula-
tion-density or shape of pollen-dispersal. For this rea-
son we shall give a graphical representation of V(<I>a(x))
as a function of Ne(x) (see Fig.5).

It can be seen from this figure that the variance of
(IJa very rapidly attains an approximately constant value
withincreasing effective size of neighbourhood. This tells
us that the range of pollen-dispersal, as well as popula-
tion density, is of minor importance for the heterogenei-
ty in relationship between offspring from the same parent.
On the other hand the graphs confirm the strong depen-
dence of the variance on the rate of self-fertilization, as
stated before. Proceeding from investigating expectations

and variances for <I>a to those for <I>b, an entirely new as-
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Fig.6. The variance of the coefficient of kinship &,(0,x)
between two seeds produced from two different mother
plants separated by a distance x as a function of this
distance. The representations are based on a one-dimen-
sional habitat, exponential pollen-distribution with range
D = 50 m and population-density p = 0.2m"~*

pect is introduced in so far as distances between plants
have to be considered. This new aspect is taken into ac-

count with the help of the quantities Ne(x,y), i.e. the
(x

pix
, which are the probabilities that one individual

in general Ne(x,y) does
pix ¥) and E(% x)
pAX Wiy
completely, it is impossible to regard expectations and
variances for <I>b just as functions of effective size. Thus

population-density, dimensionality of the habitat and
shape of pollen-dispersal have to be considered explic-

effective size of common neighbourhood, and
x)

ply
mates with the other. Because,

3

not determine the probabilities

itely. On the other hand, the great majority of re(al si-
X

wix

to decrease with increasing distance be-

tuations show a common tendency for Ne(x,y) ,
and
tween the places x and y, which then implies a decline
in E(éb). To demonstrate this situation, we shall give
some examples based on the same assumptions which were

made in the previous paper (Gregorius 1975), i.e. one-
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dimensional habitat, homogeneous population-density
(u(x) =) and exponential probability-density for the
3 3

35 - exp(-5 -+ [x-y{),

where D can be conceived as a measure for the range of

pollen-distribution (p(x|y) =

pollen-dispersal ). The following Figs.6a and 6b show
V(@b(x,y)) as a function of the distance |x-y| between
the locations x and y of the two mother-plants.

The conclusions we derived from Fig.S5, concerning

the extent to which the effective size of neighbourhood Ne

influences the variance of éa, obviously apply also to
the influence of distance between mother plants (and
thus the effective size of common neighbourhood) on the
variance of cbb, when looking at the different cases pre-
sented in Fig.6. Again the dominating quantity is the

rate of self-fertilization. In general, if there is no com-

Received January 23, 1975
Communicated by H. Stubbe
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mon neighbourhood for two plants located at places x and
y, i.e. Ne(x,y) =0 (and p(xly) = p(ylx) = 0), the ex~

pectation and variance for Cbb(x,y) is the same as in the
case of a hypothetically infinite population, where cross-
fertilization is at random, because in bothcases K(x,y)=

= p{xly) = p(ylx) = 0.
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